PATH INTEGRAL METHODS FOR LIGHT TRANSPORT **SIMULATION**

THEORY & PRACTICE

Jaroslav Křivánek

Charles University **Prague**

Iliyan Georgiev

Light Transporttion, Ltd.

Anton Kaplanyan

Next Limit Technologies

KIT

Juan

Cañada

INTRODUCTION

Jaroslav Křivánek

Charles University in Prague

Origin of this tutorial

SIGGRAPH 2013 course:

"Recent advances in light transport simulation: Theory & Practice"

Archviz

Movies

Image courtesy of Columbia Pictures. © 2006 Columbia Pictures Industries, Inc.

2002, Shrek 2 (PDI/Dreamworks)

□ 1 bounce indirect

2006, Monster House (Sony Imageworks)

- Full light transport (path traced)
- Arnold renderer

Movies

Image courtesy of Columbia Pictures. © 2006 Columbia Pictures Industries, Inc.

Movies

- 2006, Monster House (Sony Imageworks)
 - Full light transport (path traced)
 - Arnold renderer

Image courtesy of Columbia Pictures. © 2006 Columbia Pictures Industries, Inc.

Full light transport simulation

- Accuracy
- Ease of use
- Visual consistency

More information

"The State of Rendering"

Full light transport simulation

- Accuracy
- Ease of use
- Visual consistency

Issues in light transport simulation

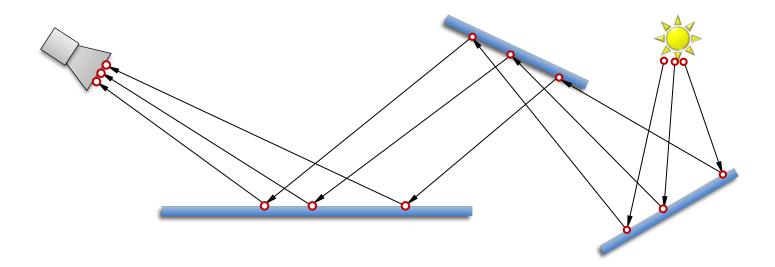
Robustness

None of the existing algorithms works for all scenes

Take-home message

Light transport simulation is **not** a solved problem

(robustness, efficiency)


Some recent advances

- Vertex Connection and Merging (VCM) = BPT + PPM [Georgiev et al. 12], [Hachisuka et al. 12]
- Improvements on Metropolis Light Transport [Jakob and Marchner 12], [Lehtinen et al. 13]

Common denominator

■ **Path integral formulation** of light transport [Veach and Guibas 1995], [Veach 1997]

Why is the path integral view so useful?

- Identify source of problems
 - High contribution paths sampled with low probability
- Develop solutions
 - Advanced, global path sampling techniques
 - Combined path sampling techniques (MIS)

Example: Vertex Connection & Merging (VCM)

SIGGRAPH Asia 2012

Example: Unified Points, Beams & Paths

SIGGRAPH 2014 (to appear)

Example: Joint Importance Sampling (JIS)

SIGGRAPH Asia 2013

Course: Recent Advances in Light Transport Simulation

Jaroslav Křivánek - Introduction

Course outline

- Path Integral Formulation of Light Transport (Jaroslav Křivánek)
- Bidirectional Path Sampling Techniques (Jaroslav Křivánek)
- Vertex Connection and Merging (Iliyan Georgiev)

Course outline

- Markov Chain and Sequential Monte Carlo Methods (Anton Kaplanyan)
- Comparison of Advanced Light Transport Methods (Anton Kaplanyan)
- Advanced Light Transport in the VFX/Archiviz industry (Juan Cañada)